Are you the publisher? Claim or contact us about this channel

Embed this content in your HTML


Report adult content:

click to rate:

Account: (login)

More Channels

Channel Catalog

Channel Description:

new & recent described Flora & Fauna species from all over the World esp. Asia, Oriental, Indomalayan & Malesiana region
    0 0

    Chilabothrus schwartzi  (Buden, 1975)

    in Reynolds, Puente-Rolón, Burgess & Baker, 2018. 
    DOI:  10.3099/MCZ46.1 

    The Crooked-Acklins Bank, a component of the southern Bahamas Archipelago, supports a terrestrial herpetofauna largely in common with other islands in the region, including a boid snake. This boa, Chilabothrus chrysogaster schwartzi (Buden, 1975), was considered a subspecies of the Southern Bahamas Boa complex (Chilabothrus chrysogaster), although the original description was based on limited specimen material. As the author of the original description used recently deceased specimens collected by locals, no description of living animals exists. Since its description in 1975 and the associated collection of four type specimens, no additional boas from Crooked-Acklins have been reported in the literature. In addition, to the best of our knowledge, no photographs of live specimens have been published, and no juveniles have been described. For these reasons, it has been suggested that the subspecies is either extremely rare or possibly extirpated from the bank. Here we report the first four living boas from the Crooked-Acklins Bank, including both juveniles and an adult. We present the first photographs of and morphological data from live wild specimens, including habitat descriptions and natural history observations. We conducted a phylogenetic analysis of these boas using maximum-likelihood and Bayesian approaches, as well as divergence time analyses, finding that the Crooked-Acklins Boa is a distinct species sister to the recently described Silver Boa (C. argentum), and is not closely related to C. chrysogaster populations. The distinctness of this taxon is also supported by known morphological and meristic characters. We describe the species as the Crooked-Acklins Boa, elevating the epithet C. schwartzi (Buden, 1975) comb. nov. to refer to boas of this genus from the Crooked and Acklins banks, Bahamas—the 13th species of Chilabothrus. We further assess the systematics of the Southern Bahamas Boa (C. chrysogaster) and the central Bahamas boas (C. strigilatus, C. argentum,and C. schwartzi) with novel sequence data for these lineages.

    Keywords: Boidae, Caribbean, Chilabothrus, mtDNA, phylogenetics, systematics

    Chilabothrus schwartzi (Buden, 1975) comb. nov. 
    Crooked-Acklins Boa

    Figure 6. A, close-up view of the head of a juvenile Chilabothrus schwartzi. Photo by Joseph P. Burgess.
    Bin-situ photo of a juvenile Cschwartzi as discovered. Photo by Alberto R. Puente-Rolón.

    R. Graham Reynolds, Alberto R. Puente-Rolón, Joseph P. Burgess and Brian O. Baker. 2018. Rediscovery and a Redescription of the Crooked-Acklins Boa, Chilabothrus schwartzi (Buden, 1975), Comb. Nov. Breviora. 558; 1-16.  DOI:  10.3099/MCZ46.1


    0 0

    Gillespie, Benjamin, Brewer, et al., 2018.

    • Hawaiian stick spiders show adaptive radiation with repeated evolution of ecomorphs
    • This phenomenon is found in only a few adaptive radiations of island insectivores
    • Camouflage against a finite set of predators and wandering habit play key roles
    • Limited pathways for the development of color contribute to deterministic evolution

    Insular adaptive radiations in which repeated bouts of diversification lead to phenotypically similar sets of taxa serve to highlight predictability in the evolutionary process. However, examples of such replicated events are rare. Cross-clade comparisons of adaptive radiations are much needed to determine whether similar ecological opportunities can lead to the same outcomes. Here, we report a heretofore uncovered adaptive radiation of Hawaiian stick spiders (Theridiidae, Ariamnes) in which different species exhibit a set of discrete ecomorphs associated with different microhabitats. The three primary ecomorphs (gold, dark, and matte white) generally co-occur in native forest habitats. Phylogenetic reconstruction mapped onto the well-known chronosequence of the Hawaiian Islands shows both that this lineage colonized the islands only once and relatively recently (2–3 mya, when Kauai and Oahu were the only high islands in the archipelago) and that the distinct ecomorphs evolved independently multiple times following colonization of new islands. This parallel evolution of ecomorphs matches that of “spiny-leg” long-jawed spiders (Tetragnathidae, Tetragnatha), also in Hawaii. Both lineages are free living, and both have related lineages in the Hawaiian Islands that show quite different patterns of diversification with no evidence of deterministic evolution. We argue that repeated evolution of ecomorphs results from a rugged adaptive landscape, with the few peaks associated with camouflage for these free-living taxa against the markedly low diversity of predators on isolated islands. These features, coupled with a limited genetic toolbox and reduced dispersal between islands, appear to be common to situations of repeated evolution of ecomorphs.

    Figure 2. Ecological Forms of the Hawaiian Ariamnes Colored boxes around images show the different ecomorphs: matte white, dark, and gold.
     (A) Ariamnes huinakolu; Kauai, Makalehas; July 2008. (B) A. sp.; Kauai, Pihea; November 2016. (C) A. kahili; Kauai, Wailua River; November 2016. (D) A. sp.; Oahu, Pahole; August 2008. (E) A. makue; Oahu, Kaala; November 2016. (F) A. uwepa; Oahu, Poamoho; November 2016. (G) A. corniger; East Maui; November 2016. (H) A. laau; East Maui; July 2013. (I) A. sp.; Molokai; November 2016. (J) A. waikula on web of Orsonwelles; Hawaii; July 2013. (K) A. hiwa; Hawaii; July 2014. (L) A. waikula; Hawaii, Saddle Road; July 2013.

    Note that all of the gold forms—(C), (F), (I), and (L)—can exhibit color polymorphism, with red superimposed on the gold, as shown in (I). Photo credits: G. Roderick, (A–J), A. Rominger, (K), D. Cotoras, (L). Insets (B1, F1, and G1) show details of the guanine structure of the respective forms.

    Ariamnes corniger, a stick spider from East Maui, Hawaiian Archipelago. This white matte ecomorph is cryptic against lichen.
     photo: George Roderick

    Gold Molokai spider.
    photo: George Roderick

    An undescribed species of Ariamnes from Kauai, Hawaiian Archipelago. It is an example of the dark ecomorph.
    photo: George Roderick 

    Rosemary G. Gillespie, Suresh P. Benjamin, Michael S. Brewer, Malia Ana J. Rivera and George K. Roderick. 2018.  Repeated Diversification of Ecomorphs in Hawaiian Stick Spiders. Current Biology. DOI: 10.1016/j.cub.2018.01.083

    How brightly colored spiders evolved on Hawaii again and again... and again   @physorg_com

    0 0

    Hedychium putaoense  Y.H. Tan & H.B. Ding

    in Ding, Bin, Zhou, et al., 2018.

    Hedychium putaoense Y.H. Tan & H.B. Ding, a new species of Zingiberaceae from Putao, Kachin state, Northern Myanmar, is described and illustrated. It is similar to H. densiflorum Wall. and H. longipedunculatum A.R.K. Sastry & D.M. Verma, but differs by its very small bract (4–6 × 2.5–3 mm vs. 18–19 × 5–5.5 mm and ca. 11 × 7 mm, respectively), semicircle and dark red bracteole, orange flower and broadly falcate to lanceolate lateral staminodes.

    Keywords: Hedychium, Myanmar, Taxonomy, Morphology, Zingiberaceae



    Figure 1. Hedychium putaoense Y.H. Tan & H.B. Ding. 
    a–b Habit c–d Inflorescence e–f Front and lateral view of flower g Bract h Bracteole i Calyx j–k Corolla lobe l–m Lateral staminodes n Labellum o Corolla tube with anther and calyx p Ovary with pistil and glands.

    Photographed by Y.H. Tan & H.B. Ding.

    Hedychium putaoense Y.H.Tan & H.B.Ding, sp. nov.

    Diagnosis: Hedychium putaoense Y.H. Tan & H.B. Ding is morphologically similar to H. densiflorum Wall. and H. longipedunculatum A.R.K. Sastry & D.M. Verma, but it can be easily distinguished by its very small bract (4–6 × 2.5–3 mm vs. 18–19 × 5–5.5 mm and ca. 11 × 7 mm, respectively) and bracteole (2–2.5 × 3–3.5 mm vs. ca. 9 × 2 mm and ca. 6 × 4 mm, respectively), orange flower and broadly falcate to lanceolate lateral staminodes.

    Distribution and habitat: This new species is known to grow at the top of the mountain from Masabu village to Namti village, Putao District, Kachin State, where it grows epiphytically on the trees of tropical montane forests at an elevation of ca. 1400–1800 m.

    Etymology: The species is named after the type locality, Putao county, in Kachin State, Myanmar.

     Hong-Bo Ding, Yang Bin, Shi-Shun Zhou, Ren Li, Mya Bhone Maw, Win Maung Kyaw and Yun-Hong Tan. 2018. Hedychium putaoense (Zingiberaceae), A New Species from Putao, Kachin State, Northern Myanmar. In: Jin X-H, Shui Y-M, Tan Y-H, Kang M (Eds) Plant Diversity in Southeast Asia. PhytoKeys. 94: 51-57.  DOI: 10.3897/phytokeys.94.22065

    0 0

    Passiflora kumandayi M.A. Buitrago A. & Coca

    in Buitrago A., MacDougal & Coca, 2018. 

    A new species of passion flower from the Cordillera Central of the Colombian Andes is here described; Passiflora kumandayi M.A. Buitrago A. & Coca (subgenus Decaloba, supersection Auriculata). This species, along with five other closely related Andean species, comprise a monophyletic group characterized by paired branched inflorescences and small flowers with short or absent androgynophores. A provisional key to the species in the newly described section Apodae is presented. Passiflora kumandayi is here illustrated and its affinities with related species are discussed based on morphology and phylogenetic binning analysis using molecular site weight calibration.

    Keywords: Passiflora, section Apodae, subgenus Decaloba, Colombia, Molecular Site Weight Calibration, Eudicots

    María Alejandra Buitrago A., John M. MacDougal and Luis Fernando Coca. 2018. Passiflora kumandayi (Passifloraceae), A New Species from the Colombian Andes in A New Section within Subgenus DecalobaPhytotaxa. 344(1); 13–23. DOI:  10.11646/phytotaxa.344.1.2

    0 0

    Figure 1: Sampling localities (A) and Maximum likelihood (ML) tree obtained based on mtDNA data of Tylototriton s.l. and relatives (B). Sample number 1–108 refer to Table S1. Five clades (I, II, III, IV and V) of the genus were denoted as different colors. Bootstrap supports (bs) resulted from ML analyses and posterior probability (pp) resulted from Bayesian inference (BI) method were labeled on major nodes. Node supports ML1 and BI1 were resulted from analyses on mtDNA data, while ML2 and BI2 were from analyses on four-gene concatenated data. Black: bs > 70% or pp > 0.95, grey: bs = 50–70% or pp = 0.85–0.95, white: bs < 50% and pp < 0.85.

    in Wang, Nishikawa, Matsui, et al​., 2018.
      DOI: 10.7717/peerj.4384 


    Global climatic transitions and Tibetan Plateau uplifts are hypothesized to have profoundly impacted biodiversity in southeastern Asia. To further test the hypotheses related to the impacts of these incidents, we investigated the diversification patterns of the newt genus Tylototriton sensu lato, distributed across the mountain ranges of southeastern Asia. Gene-tree and species-tree analyses of two mitochondrial genes and two nuclear genes revealed five major clades in the genus, and suggested several cryptic species. Dating estimates suggested that the genus originated in the early-to-middle Miocene. Under different species delimitating scenarios, diversification analyses with birth-death likelihood tests indicated that the genus held a higher diversification rate in the late Miocene-to-Pliocene era than that in the Pleistocene. Ancestral area reconstructions indicated that the genus originated from the northern Indochina Peninsula. Accordingly, we hypothesized that the Miocene Climatic Transition triggered the diversification of the genus, and the reinforcement of East Asian monsoons associated with the stepwise uplifts of the Tibetan Plateau promoted the radiation of the genus in southeastern Asia during the Miocene-to-Pliocene period. Quaternary glacial cycles likely had limited effects on speciation events in the genus, but mainly had contributions on their intraspecific differentiations.

    Figure 1: Sampling localities (A) and Maximum likelihood (ML) tree obtained based on mtDNA data of Tylototriton s.l. and relatives (B).
    Sample number 1–108 refer to Table S1. Five clades (I, II, III, IV and V) of the genus were denoted as different colors. Bootstrap supports (bs) resulted from ML analyses and posterior probability (pp) resulted from Bayesian inference (BI) method were labeled on major nodes. Node supports ML1 and BI1 were resulted from analyses on mtDNA data, while ML2 and BI2 were from analyses on four-gene concatenated data. Black: bs > 70% or pp > 0.95, grey: bs = 50–70% or pp = 0.85–0.95, white: bs < 50% and pp < 0.85.

    in Wang, Nishikawa, Matsui, et al​., 2018.

    Our findings provided evidence for the profound influences of historical climate shifts especially associated with the uplift of the Tibetan Plateau on the diversification of animals occurring in the southeastern Asia. The results basically confirmed the reports on plant lineages, such as Rheum (Sun et al., 2012), Lepisorus (Wang et al., 2012a; Wang et al., 2012b), Juniperus (Mao et al., 2010) and Isodon (Yu et al., 2014), and on animal groups, such as Chiastocheta Pokorny, 1889 (Anthomyiidae, Diptera, Insecta; Espíndola, Buerki & Alvarez, 2012) and spiny frogs (Dicroglossidae, Anura, Amphibia; Che et al., 2010). Yet the present study further supplied some other indications. Primarily, although diversification of the newt group was promoted by the climatic shifts, several factors, for example, niche limits and their intrinsic low dispersal capacity, might have contributed to their Pleistocene rate-slowdown diversification. In addition, this study provided a putative “complete” species tree for Tylototriton s.l. to date. The inclusion of many putative cryptic species in the diversification analyses seems to be effective in finding diversification models of the group. But at present, wild populations of Tylototriton s.l. show a significant decline due to many reasons, such as climate changes, human capture and habitat deterioration. Further deep investigations of undetected cryptic lineages might supply the basic requirement for disclosing “true” diversification history of the taxa.

    Bin Wang, Kanto Nishikawa, Masafumi Matsui, Truong Quang Nguyen, Feng Xie, Cheng Li, Janak Raj Khatiwada, Baowei Zhang, Dajie Gong, Yunming Mo, Gang Wei, Xiaohong Chen, Youhui Shen, Daode Yang, Rongchuan Xiong and Jianping Jiang​. 2018. Phylogenetic Surveys on the Newt Genus Tylototriton sensu lato (Salamandridae, Caudata) reveal Cryptic Diversity and Novel Diversification Promoted by Historical Climatic Shifts. PeerJ. 6:e4384.  DOI: 10.7717/peerj.4384

    0 0

    Pristimantis antisuyu
     Catenazzi & Lehr, 2018


    We describe two new species of Pristimantis from the Kosñipata valley in the eastern slopes of the Andes near Manu National Park, Peru. The two new species are closely related but do not overlap elevationally: Pristimantis antisuyu sp. n. occurs from 1485–1823 m a.s.l., whereas Pristimantis erythroinguinis sp. n. occurs from 930–1255 m a.s.l. Both species are readily distinguished from all other species of Pristimantis but P. cruciocularis and P. flavobracatus by possessing an iris with a cruciform pattern, no tympanum, and red bright or yellow coloration on groin. We used a Maximum Likelihood approach to infer a molecular phylogeny on a dataset composed of 27 terminals and 903 bp of the concatenated 16S rRNA and COI mitochondrial fragments. Our phylogenetic analyses indicate that, despite differing in groin coloration from red to yellow, individuals of P. cruciocularis and P. flavobracatus form a single clade, and some specimens have identical 16S sequences. Therefore, we synonymize P. flavobracatus with P. cruciocularis. The two unnamed species are closely related to P.cruciocularis. Pristimantis antisuyu sp. n. differs from P. cruciocularis and P. erythroinguinis sp. n. by having smaller yellow spots, instead of extensive red coloration, on groin and hind limbs, by being larger with proportionally longer tibias, and by having an inner metatarsal tubercle three times the size of outer metatarsal tubercle (twice as long in the other two species). Pristimantis erythroinguinis sp. n., despite having coloration very similar to P. cruciocularis, is the sister taxon to both P. antisuyu sp. n. and P. cruciocularis, and can be distinguished from the latter by having much darker ventral coloration, and no cream or yellow spots on flanks and surrounding the red inguinal marks.

    Keywords: Amphibia, Amazon Basin, Brachycephaloidea, frog, cloud forest, Paucartambo, phylogenetics, synonymy, taxonomy, Terrarana

    Alessandro Catenazzi and Edgar Lehr. 2018. Pristimantis antisuyu sp. n. and Pristimantis erythroinguinis sp. n., Two New Species of Terrestrial-breeding Frogs (Anura, Strabomantidae) from the eastern Slopes of the Andes in Manu National Park, Peru.   4394(2); 185–206.  DOI: 10.11646/zootaxa.4394.2.2
    Two new frog species for Manu National Park - Catenazzi Lab

    0 0

     Scolecoseps broadleyi
    Verburgt, Verburgt & Branch, 2018

    Seven specimens of Scolecoseps Loveridge, 1920 from the vicinity of Palma on the north coast of Mozambique are compared morphologically with other known material of this genus. The new material can be distinguished morphologically from all other Scolecoseps by the presence and position of certain head scales, particularly a supraciliary and four small suboculars, a small mental and high subcaudal counts. It is described as a new species, Scolecoseps broadleyi sp. nov. The new species is found in coastal savannah habitat under leaf litter of Berlinia orientalis trees, in sandy soils in close proximity to large wetlands. Its currently known distribution is south of the range of Scolecoseps litipoensis Broadley, 1995 and north of that of Scolecoseps boulengeri Loveridge, 1920. We provide a review of the available literature for the genus Scolecoseps and highlight the necessity for additional research on these poorly known fossorial skinks.

    KEYWORDS: arenosols, coastal savannah habitat, fossorial, sandy soils, skinks

    Scolecoseps broadleyi sp. nov.; Paratype, PEM R22698, showing head shields

    Scolecoseps broadleyi sp. nov. 

    Etymology— Named in honour of Donald George Broadley in recognition of his numerous contributions to African herpetology. Don assisted greatly with the description of this new species. 

    Figure 3 .Scolecoseps broadleyi sp. nov.
    A) Holotype, NMZB 17985 in life and B) ventral view after preservation;
     C) Paratype, PEM R22697 in life and D) Paratype, PEM R22698, showing head shields. 

    Luke Verburgt, Ursula K. Verburgt and William R. Branch. 2018. A New Species of Scolecoseps (Reptilia: Scincidae) from coastal north-eastern Mozambique. African Journal of Herpetology. DOI: 10.1080/21564574.2017.1413014

    0 0

    Isotomurus festus
    Potapov, Porco & Deharveng, 2018


    Colour pattern is the most common character to identify species in several large genera of Collembola. Its use often raises problems due to various and poorly investigated extent of chromatic variability among species. Isotomurus festus sp. nov. is here described from Kunashir Isl. (the Kuriles, the Far East of Russia). The species, a member of the ‘antennalis’ group, is characterized by the lack of trichobothria and slender claws, but is greatly variable in coloration. DNA barcoding (COI) results supports that all the colour forms encountered belong to the same species. While colour pattern has been shown to be the most reliable character for species identification in several Entomobryidae genera, it might not be the case in Isotomurus Börner, 1903, the sole large Isotomidae genus where colour pattern is routinely used for taxonomy.

    Keywords: Collembola, the Far East, hydrophilic, colour pattern, barcoding, taxonomy, polymorphism

    Mikhail Potapov, David Porco and Louis Deharveng. 2018. A New Member of the Genus Isotomurus from the Kuril Islands (Collembola: Isotomidae): Returning to the Problem of “Colour Pattern Species”. Zootaxa. 4394(3); 383–394. DOI:  10.11646/zootaxa.4394.3.4

    0 0

    FIGURE 1. Representative amphibian hosts and their habitats sampled for this study:
    (A,B) Hypsiboas gladiator is non-susceptible to chytridiomycosis and lays aquatic eggs in streamside basins along montane streams in the cloud forest; (C,D) Psychrophrynella usurpator is non-susceptible and lays terrestrial eggs that undergo direct development under mosses in the high-Andean grassland; (E,F) Telmatobius marmoratus is highly susceptible to chytridiomycosis and lays aquatic eggs in small, high-Andean streams.
    Photographs by A. Catenazzi.

    in Catenazzi, Flechas, Burkart, et al. 2018.

    Emerging infectious disease is a growing threat to global health, and recent discoveries reveal that the microbiota dwelling on and within hosts can play an important role in health and disease. To understand the capacity of skin bacteria to protect amphibian hosts from the fungal disease chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd), we isolated 192 bacterial morphotypes from the skin of 28 host species of frogs (families Bufonidae, Centrolenidae, Hemiphractidae, Hylidae, Leptodactylidae, Strabomantidae, and Telmatobiidae) collected from the eastern slopes of the Peruvian Andes (540–3,865 m a.s.l.) in the Kosñipata Valley near Manu National Park, a site where we previously documented the collapse of montane frog communities following chytridiomycosis epizootics. We obtained isolates through agar culture from skin swabs of wild frogs, and identified bacterial isolates by comparing 16S rRNA sequences against the GenBank database using BLAST. We identified 178 bacterial strains of 38 genera, including 59 bacterial species not previously reported from any amphibian host. The most common bacterial isolates were species of Pseudomonas, Paenibacillus, Chryseobacterium, Comamonas, Sphingobacterium, and Stenotrophomonas. We assayed the anti-fungal abilities of 133 bacterial isolates from 26 frog species. To test whether cutaneous bacteria might inhibit growth of the fungal pathogen, we used a local Bd strain isolated from the mouthparts of stream-dwelling tadpoles (Hypsiboas gladiator, Hylidae). We quantified Bd-inhibition in vitro with co-culture assays. We found 20 bacterial isolates that inhibited Bd growth, including three isolates not previously known for such inhibitory abilities. Anti-Bd isolates occurred on aquatic and terrestrial breeding frogs across a wide range of elevations (560–3,695 m a.s.l.). The inhibitory ability of anti-Bd isolates varied considerably. The proportion of anti-Bd isolates was lowest at mid-elevations (6%), where amphibian declines have been steepest, and among hosts that are highly susceptible to chytridiomycosis (0–14%). Among non-susceptible species, two had the highest proportion of anti-Bd isolates (40 and 45%), but one common and non-susceptible species had a low proportion (13%). In conclusion, we show that anti-Bd bacteria are widely distributed elevationally and phylogenetically across frog species that have persisted in a region where chytridiomycosis emerged, caused a devastating epizootic and continues to infect amphibians.

    Keywords: 16S rRNA gene, amphibian declines, amphibian skin bacteria, antifungal bacteria, elevational gradient, montane diversity gradient, neotropical, tropical Andes

    We found that anti-Bd bacteria are widely distributed across bacterial phyla and genera, occur along a wide elevational range in the Amazon to Andes transition, and are found on amphibian hosts that use aquatic, terrestrial and arboreal environments. The pattern of elevational distribution of anti-Bd isolates, and the association of high proportion of anti-Bd isolates of high inhibitory strength with low host susceptibility to disease, support the idea that symbiotic bacteria play a functional role in amphibian skin defense. Yet this association does not consistently explain the fate of amphibian hosts along the elevational gradient, suggesting complex interactions among bacterial symbionts, hosts, and environmental factors in determining frog persistence in a region of high disease prevalence.

    Alessandro Catenazzi, Sandra V. Flechas, David Burkart, Nathan D. Hooven, Joseph Townsend and Vance T. Vredenburg. 2018. Widespread Elevational Occurrence of Antifungal Bacteria in Andean Amphibians Decimated by Disease: A Complex Role for Skin Symbionts in Defense Against Chytridiomycosis. Front. Microbiol., DOI: 10.3389/fmicb.2018.00465

    0 0

    Hedychium marginatum, H. speciosum var. gardnerianum, Hthyrsiforme Hurophyllum
    in Ashokan & Gowda, 2018.

    The authors introduce the term facultative vivipary for the first time in gingers and elaborate on this reproductive strategy. Four new observations of facultative vivipary are reported in the genus Hedychium which were discovered during botanical explorations by the authors in Northeast India (NE India) over the past three years. The viviparous taxa are H. marginatum C.B.Clarke, H. speciosum var. gardnerianum (Ker Gawl.) Sanoj & M.Sabu (previously, H. gardnerianum Sheppard ex Ker Gawl.), H. thyrsiforme Buch.-Ham. ex Sm. and H. urophyllum G.Lodd. The authors also attempt to summarise the occurrence of vivipary in the family Zingiberaceae from published reports and to clarify a taxonomic misidentification in a previously known report of vivipary in Hedychium elatum.

    Keywords: Facultative vivipary, gingers, Meghalaya, Nagaland, phenology, pseudovivipary, recalcitrant seeds

    Figure 2. Facultative vivipary in Hedychium.
    A & B Hedychiummarginatum C & D H. speciosum var. gardnerianum, E & F. H. thyrsiforme, G & H. H. urophyllum.

    Photographed by A. Ashokan & N.S. Prasanna (E&F).

    Figure 3. Inflorescence. A Hedychium marginatum B H. speciosum var. gardnerianum C H. thyrsiforme D H. urophyllum.
    Photographed by A. Ashokan.

     Ajith Ashokan and Vinita Gowda. 2018. Describing Terminologies and Discussing Records: More Discoveries of Facultative Vivipary in the Genus Hedychium J.Koenig (Zingiberaceae) from Northeast India. PhytoKeys 96: 21-34.  DOI: 10.3897/phytokeys.96.23461

    0 0

     Neonate southern African pythons (Python natalensis) basking at the entrance to the nest chamber.

    in  Alexander. 2018.  DOI: 10.1111/jzo.12554

    Reproductive strategies such as parental care have been pivotal in evolutionary innovations such as endothermy in birds and mammals. The diversity of reproductive biology across the squamates provides a unique opportunity for elucidating the selective forces responsible for the evolution of various reproductive strategies. Here, I report on the reproductive biology of the southern African python (Python natalensis), based on a 7-year study of free-ranging pythons, revealing a behavioural complexity not usually expected for snakes. Mating occurred in the austral winter, with individual males following females for more than 2 months. As is typical for pythons, females brooded eggs by coiling around the clutch. Females are capital breeders; they lost ~40% body mass during a breeding event and did not breed in consecutive years. There was no evidence of the facultative thermogenesis that has been reported in congeners, suggesting that facultative thermogenesis has arisen independently more than once in Python. Reproductive females thermoregulated more carefully than non-reproductives, maintaining higher, more stable Tbs at all stages of reproduction, especially while brooding. This was achieved by a stereotypic basking regime facilitated by ‘facultative melanism’, with females darkening significantly for the entire breeding event. Mothers remained with neonates at the nest site for approximately 2 weeks after hatching. During this time, mothers alternated between brief bouts of basking on the surface and coiling around the hatched eggs, on which the neonates rested. Neonates formed an aggregation near the burrow entrance to bask during the day, individually returning to the nest intermittently throughout the day. During the night, neonates remained within the mother's coils on the hatched eggs. This study highlights the diversity of reproductive biology within Python and cautions against generalization in this regard. This is the first unambiguous report of maternal care of neonates in an oviparous snake.

    Figure 4.  Neonate southern African pythons (Python natalensis) basking at the entrance to the nest chamber.
     Some of the neonates have already undergone their first shed.

    G. J. Alexander. 2018. Reproductive Biology and Maternal Care of Neonates in southern African Python (Python natalensis).  Journal of Zoology.  DOI: 10.1111/jzo.12554

    New insights into how southern African pythons look after their babies
    'Cold-blooded' pythons make for caring moms via @physorg_com

    0 0

     Ascendonanus nestleri 
    Spindler,  Werneburg, Schneider, Luthardt, Annacker & Rößler, 2018

    A new fossil amniote from the Fossil Forest of Chemnitz (Sakmarian-Artinskian transition, Germany) is described as Ascendonanus nestleri gen. et sp. nov., based on five articulated skeletons with integumentary preservation. The slender animals exhibit a generalistic, lizard-like morphology. However, their synapsid temporal fenestration, ventrally ridged centra and enlarged iliac blades indicate a pelycosaur-grade affiliation. Using a renewed data set for certain early amniotes with a similar typology found Ascendonanus to be a basal varanopid synapsid. This is the first evidence of a varanopid from Saxony and the third from Central Europe, as well as the smallest varanopid at all. Its greatly elongated trunk, enlarged autopodia and strongly curved unguals, along with taphonomical observations, imply an arboreal lifestyle in a dense forest habitat until the whole ecosystem was buried under volcanic deposits. Ascendonanus greatly increases the knowledge on rare basal varanopids; it also reveals a so far unexpected ecotype of early synapsids. Its integumentary structures present the first detailed and soft tissue skin preservation of any Paleozoic synapsid. Further systematic results suggest a varanodontine position for Mycterosaurus, the monophyly of South African varanopids including Anningia and the distinction of a skeletal aggregation previously assigned to Heleosaurus, now renamed as Microvaranops parentis gen. et sp. nov.

    Keywords: Arboreality, Synapsid phylogeny, Adaptation, Cisuralian, Soft tissue preservation, Volcanic taphonomy


    Frederik Spindler, Ralf Werneburg, Joerg W. Schneider, Ludwig Luthardt, Volker Annacker and Ronny Rößler. 2018. First Arboreal 'Pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with A Review of Varanopid Phylogeny. PalZ.  DOI: 10.1007/s12542-018-0405-9

    Vortrag: Saurier unter Chemnitz – neue Erkenntnisse aus dem Versteinerten Wald

    Abstract: The palaeontological collection of Chemnitz has been a constantly growing, developing and limitless source of knowledge on the relation of earth’s history and the development of life on earth, for over three centuries. Initially founded by science interested citizens on a voluntary basis, only with the premise to enable public access to collections and scientific information, it has developed and has been structuralized based on professional geoscientific considerations. Today, the collection is preserved, added to through selected purchases, diversely used and it serves as a foundation for globally linked up scientific research, as well as for interdisciplinary exhibitions and diverse educational programs and activities. The essence of the collection documents the evolution and preservation of terrestrial ecosystems with a special emphasis on volcanic environments and petrified wood.

    Ronny Rößler and Thorid Zierold. 2017. Die paläontologische Sammlung des Museums für Naturkunde Chemnitz – eine Zeitreise zu den Wurzeln der Paläobotanik. Veröff. Museum für Naturkunde Chemnitz. 40; 5-30.

    0 0

    Gephyromantis (Vatomantis) lomorina 
    Scherz, Hawlitschek, Razafindraibe, Megson, Ratsoavina, Rakotoarison, Bletz, Glaw & Vences, 2018

     DOI:  10.3897/zse.94.21037 

    We describe a new species of the genus Gephyromantis, subgenus GephyromantisVatomantis (Mantellidae, Mantellinae), from moderately high elevation (1164–1394 m a.s.l.) on the Marojejy, Sorata, and Andravory Massifs in northern Madagascar. The new species, Gephyromantis (Vatomantis) lomorina sp. n. is highly distinct from all other species, and was immediately recognisable as an undescribed taxon upon its discovery. It is characterised by a granular, mottled black and green skin, reddish eyes, paired subgular vocal sacs of partly white colour, bulbous femoral glands present only in males and consisting of three large granules, white ventral spotting, and a unique, amplitude-modulated advertisement call consisting of a series of 24–29 rapid, quiet notes at a dominant frequency of 5124–5512 Hz. Genetically the species is also strongly distinct from its congeners, with uncorrected pairwise distances ≥10 % in a fragment of the mitochondrial 16S rRNA gene to all other nominal Gephyromantis species. A molecular phylogeny based on 16S sequences places it in a clade with species of the subgenera Laurentomantis and Vatomantis, and we assign it to the latter subgenus based on its morphological resemblance to members of Vatomantis. We discuss the biogeography of reptiles and amphibians across the massifs of northern Madagascar, the evidence for a strong link between Marojejy and Sorata, and the role of elevation in determining community sharing across this landscape.

    Key Words: Bioacoustics, Biogeography, Marojejy, Montane Endemism, Sorata, Taxonomy

    Figure 2. The holotype of Gephyromantis lomorina sp. n., ZSM 419/2016 (ZCMV 15221) in life.
    (a) Dorsal; (b) ventral; and (c) dorsolateral view. Scale bars indicate 5 mm. 

    Gephyromantis (Vatomantis) lomorina sp. n. 

    Diagnosis: A species assigned to the genus Gephyromantis on the basis of its granular skin, moderately enlarged finger tips, small femoral glands consisting of a small number of large granules and present in males only (thus of type 2 as defined by Glaw et al. 2000), and bifid tongue. Within the genus Gephyromantis, assigned to the subgenus Vatomantis on the basis of its small size, connected lateral metatarsalia, absence of an outer metatarsal tubercle, paired subgular vocal sacs of partly whitish colour, greenish skin colouration, and riparian ecology. Gephyromantis lomorina sp. n. is characterized by the possession of the following suite of morphological characters: (1) granular skin, (2) reddish eyes, (3) mottled green and black skin, (4) males with paired subgular vocal sacs of partly white colour, (5) males with bulbous type 2 femoral glands consisting of a small number (2–3) of large granules, (6) white spots on the venter, (7) SVL 20.2–25.5 mm, and (8) fourth finger much longer than second. Furthermore, the species is characterised by distinctive, 1681–1827 ms advertisement calls of relatively low intensity, consisting of 24–30 individual pulsed notes, with 2–4 pulses per note, an inter-note interval of 41–75 ms, and a dominant frequency of 5124–5555 Hz. DNA sequence data from the 16S gene fragment supports the high divergence of this taxon to all other Gephyromantis, and is in agreement with its subgeneric assignment, albeit without statistical support (Fig. 1).

    Etymology: The specific epithet is the Malagasy word lomorina, meaning ‘covered in moss’, in reference to the green, mossy appearance of the species in life. It is used as an invariable noun in apposition to the genus name.

    Available names: There are no other, earlier names currently available (e.g., junior synonyms) that are assignable to the subgenera Vatomantis or Laurentomantis and that could apply to the new species.

    Distribution: The new species is known from three localities in northeastern Madagascar: (1) Marojejy National Park (type locality), (2) Sorata massif, and (3) Andravory massif (Fig. 6). All specimens were collected between 1164 and 1394 m a.s.l.
    Natural history: Specimens were collected near mountain streams in pristine montane riparian rainforest (Fig. 4g). In Marojejy National Park they were encountered during and after light rain, sitting in inconspicuous locations, especially on the fronds of tree ferns, but also on other low vegetation, between a few centimetres and up to 2 m above the ground. Specimens in Sorata were found in similar positions during dry weather, in the days just before the beginning of the rainy season. Males called irregularly and softly (see the call description above). Population density in Marojejy was remarkably high, with around three or four individuals being found along a 10 m stretch of stream. The observed density in Sorata was lower, possibly due to the absence of rain during the observation period. The species occurred in close sympatry with a number of other mantellids, but only few of these (especially Mantidactylus aff. femoralis) were found in the same microhabitat. Several specimens from Marojejy had pinkish mites (probably of the genus Endotrombicula; see Wohltmann et al. 2007) embedded within translucent whitish pustules on the skin of their fingers, toes, and bodies. Nothing is known about the reproduction of this species, but the calling sites suggest an association with lotic water.

    Figure 3. Morphological and chromatic variation among paratypes of Gephyromantis (Vatomantis) lomorinasp. n. from Marojejy in life.
     (a–b) ZSM 420/2016; (c–d) UADBA 60296; (e–f) UADBA 60295; and (g–h) ZSM 418/2016. Scale bars indicate 2 mm. 

    Figure 4. Photographs of Gephyromantis (Vatomantis) lomorina sp. n. and its habitat in Sorata.
     (a,d) ZSM 1545/2012; (b,e) ZSM 1547/2012; and (c,f) ZSM 1549/2012, not to scale;
     (g) habitat where several specimens were found in Sorata, showing (h,i) the appearance of the species in situ whilst calling at night.

     Mark D. Scherz, Oliver Hawlitschek, Jary H. Razafindraibe, Steven Megson, Fanomezana Mihaja Ratsoavina, Andolalao Rakotoarison, Molly C. Bletz, Frank Glaw and Miguel Vences. 2018. A Distinctive New Frog Species (Anura, Mantellidae) supports the Biogeographic Linkage of Two Montane Rainforest Massifs in northern Madagascar. Zoosystematics and Evolution. 94(2); 247-261. DOI:  10.3897/zse.94.21037

    0 0

    Caprolagus hispidus (Pearson, 1839)

    in Khadka, Yadav, Aryal & Aryal, 2017. 

    The critical endangered hispid hare (Caprolagus hispidus) was first recorded as present in Chitwan, Bardiya and Shuklaphanta National Parks of Nepal in 1984. Since then, the species was recorded only in Bardiya and Suklaphanta National Parks. For more than three decades, it had not been observed in Chitwan National Park (CNP), where it was consequently considered extinct. In January 2016, a new recording for the hispid hare took place in CNP, placing that rare mammal again within CNP mammal assemblages. We reported the first photographic confirmation of the presence (30 Jan 2016) of the species in the CNP after 1984. The presence of hispid hare is confined to isolate patched of grassland of the national park. The population of the hispid hare is rapidly declining due to anthropogenic pressure and grassland fire from its distributed range (only found in Nepal, India, and Bhutan). Therefore, further study about their presence-absence, population status need to do throughout the grassland of the low land of Nepal including the newly rediscovering park.

    Keywords: Hipsid hare, Chitwan National Park, new records, small mammals 

    Hispid hare individual which was recorded in Chitwan National Park in 2016, as captured by camera-traps. The present recording is the 2nd observation of the species in the region since 1984.
    photo: Bed Khadka

    Bed Bahadur Khadka, Bhupendra Prasad Yadav, Nurendra Aryal and Achyut Aryal. 2017. Rediscovery of the Hispid Hare (Caprolagus hispidus) in Chitwan National Park, Nepal After Three Decades.   Conservation Science. 5(1); 10-12. DOI:  10.3126/cs.v5i1.18560

    Small mammal thought to be extinct rediscovered in Nepal's national park via @physorg_com

    0 0

    in Tallowin, Tamar, Meiri, et al., 2018.
      DOI: 10.1016/j.ympev.2018.03.020

    • Australo-Papuan Cyrtodactylus geckos initially colonized and diversified within proto-Papuan islands in the early to mid-Miocene.
    • Diversification was predominantly localized within distinct geological regions.
    • Montane uplift played a critical role in the diversification of the regions Cyrtodactylus.

    Regions with complex geological histories present a major challenge for scientists studying the processes that have shaped their biotas. The history of the vast and biologically rich tropical island of New Guinea is particularly complex and poorly resolved. Competing geological models propose New Guinea emerged as a substantial landmass either during the Mid-Miocene or as recently as the Pliocene. Likewise, the estimated timing for the uplift of the high Central Cordillera, spanning the length of the island, differs across models. Here we investigate how early islands and mountain uplift have shaped the diversification and biogeography of Cyrtodactylus geckos. Our data strongly support initial colonisation and divergence within proto-Papuan islands in the Early- to Mid-Miocene, with divergent lineages and endemic diversity concentrated on oceanic island arcs in northern New Guinea and the formerly isolated East-Papuan Composite Terrane. At least four lineages are inferred to have independently colonised hill- and lower-montane forests, indicating that mountain uplift has also played a critical role in accumulating diversity, even in this predominantly lowland lineage. Our findings suggest that substantial land in northern New Guinea and lower-montane habitats date back well into the Miocene and that insular diversification and mountain colonisation have synergistically generated diversity in the geologically complex Papuan region.

    Keywords: biogeography; geology; Papuan region; time calibration

    Oliver J.S. Tallowin, Karin Tamar, Shai Meiri, Allen Allison, Fred Kraus, Stephen J. Richards and Paul M. Oliver. 2018.  Insular Diversification and Mountain Uplift were Complementary Drivers of Diversification in A Diverse Melanesian Lizard Radiation (Gekkonidae: Cyrtodactylus).  Molecular Phylogenetics and Evolution. DOI: 10.1016/j.ympev.2018.03.020

    0 0

    Acomys russatus lewisi  Atallah, 1967

    in Amr, Abu Baker, Qumsiyeh & Eid, 2018.


    Distributional and ecological data were given to all rodents of Jordan. The rodent fauna of Jordan consists of 28 species with 20 genera in eight families (Cricetidae, Dipodidae, Gliridae, Hystricidae, Muridae, Myocastoridae, Sciuridae,and Spalacidae), including four introduced species.Keys for families and species were provided, along with diagnosis for each species and cranial illustrations for most species. Habitat preference and zoogeographic affinities of rodents in Jordan were analyzed, as well as their status and conservation.Threat categories and causes of threats on the rodents of Jordan were also analyzed.

            The distribution of rodents in Jordan represents a reflection of their global distribution ranges and habitat preferences. Species associated with the temperate forest of northern Jordan includes Sciurus anomalus and two wood mice, Apodemus mystacinus and A. flavicollis, while non-forested areas are represented by Nannospalax ehrenbergi and Microtus guentheri. Strict sand dwellers include Gerbillus cheesmani and G. gerbillus. Petrophiles associated with sandstone or black lava deserts are exemplified by Acomys russatus, A. r. lewsi, H. indica and S. calurus. Others including: Jaculus jaculus, G. nanus, G. henleyi, Meriones crassus, and M. libycus are all desert-adapted species with wider ranges of distribution where scarce vegetation, wadibeds, and marabs with clay, loess, or gravel surfaces provide foraging grounds and shelter. A single species, Gerbillus dasyurus, exhibits a wide range of distribution over diverse habitat types.

            The rodent fauna of Jordan consists of assemblages of different zoogeographical affinities. Nine, three, and seven were restricted or had most of its range within the Mediterranean, Irano-Turanian, and Saharo Arabian, respectively. Sciurus anomalus, Apodemus sp., Nannospalax ehrenbergi, and Microtus guentheri reached their most southern range of distribution in the Mediterranean regions of Jordan. The distribution of Gerbillus cheesmani extends from Asian deserts in India westwards into the Arabian Peninsula crossing Jordan as its most western range of distribution. Typical rodents of Saharo-Arabian affinities are represented by desert jerboas, gerbils, and jirds. North African species such as G. andersoni,G. gerbillus reached their most eastern distribution in southern Jordan. Both G. henleyi and G. nanus are widely-distributed species across North Africa reaching as far as India to the east, representing most northern outpost for these two species. Sekeetamys calurus is a nearly endemic to the Eastern Mediterranean region within southern Jordan and Sinai. Relicts are represented by Eliomys melanurus and Acomys russatus lewisi.

            Several threats affecting the rodent biodiversity in Jordan were identified including habitat loss and degradation, human disturbance and related activity, legislative and public awareness. The global conservation status of the rodents of Jordan according to the IUCN Red List include 22 species as least concern, one as near threatened (Allactaga euphratica), and one as data deficient (Nannospalax ehrenbergi). According to the regional assessment, one species is critically endangered, three species are considered endangered, one vulnerable.

    Keywords: Mammalia, biodiversity, habitat preference, Jordan, rodents, zoogeography

    Acomys russatus lewisi Atallah, 1967 

    Zuhair S. Amr, Mohammad A. Abu Baker, Mazin Qumsiyeh and  Ehab Eid. 2018.  Systematics, Distribution and Ecological Analysis of Rodents in Jordan. Zootaxa. 4397(1);  1-94.   DOI:  10.11646/zootaxa.4397.1.1

    0 0

    Begonia adamsensis 

    in Magtoto, Rubite & Austria, 2018.
       DOI:  10.11646/phytotaxa.343.3.10  


    Begonia adamsensis from the northern part of Luzon Island is described as a new species endemic to the Philippines. This is the latest addition to the Begonia sect. Baryandra, making the total of Philippine begonias in this section to 56 species. It resembles Begonia hernandioides because its leaves are peltate, with a broad base, acuminate tip, nearly entire margin, and a glabrous peduncle; however, it differs significantly from B. hernandioides because of its broadly ovate red stipule, pubescent petiole, elliptic peltate leaf, pubescent abaxial lamina, and 4 perianth segments in the carpellate flower. Only about 200 individuals were found in a 100-m area that is being developed as a tourist spot in the locality, hence Begonia adamsensis is hereby proposed as critically endangered.

    Keywords: BegoniaBaryandra, Philippines, Eudicots

    Liezel M. Magtoto, Rosario R. Rubite and Celia Austria. 2018. Begonia adamsensis (sect. Baryandra, Begoniaceae), A New Species from Luzon Island, the Philippines. Phytotaxa. 343(3);  289–292.   DOI:  10.11646/phytotaxa.343.3.10 

    0 0

    Map showing locations of kiwaids and the Cretaceous stem lineage fossil Pristinaspina gelasina in relation to land-masses and mid-ocean ridges.
    in Roterman, Lee, Liu, et al., 2018.

    The recent discovery of two new species of kiwaid squat lobsters on hydrothermal vents in the Pacific Ocean and in the Pacific sector of the Southern Ocean has prompted a re-analysis of Kiwaid biogeographical history. Using a larger alignment with more fossil calibrated nodes than previously, we consider the precise relationship between Kiwaidae, Chirostylidae and Eumunididae within Chirostyloidea (Decapoda: Anomura) to be still unresolved at present. Additionally, the placement of both new species within a new “Bristly” clade along with the seep-associated Kiwa puravida is most parsimoniously interpreted as supporting a vent origin for the family, rather than a seep-to-vent progression. Fossil-calibrated divergence analysis indicates an origin for the clade around the Eocene-Oligocene boundary in the eastern Pacific ~33–38 Ma, coincident with a lowering of bottom temperatures and increased ventilation in the Pacific deep sea. Likewise, the mid-Miocene (~10–16 Ma) rapid radiation of the new Bristly clade also coincides with a similar cooling event in the tropical East Pacific. The distribution, diversity, tree topology and divergence timing of Kiwaidae in the East Pacific is most consistent with a pattern of extinctions, recolonisations and radiations along fast-spreading ridges in this region and may have been punctuated by large-scale fluctuations in deep-water ventilation and temperature during the Cenozoic; further affecting the viability of Kiwaidae populations along portions of mid-ocean ridge.

    Fig 1. Photographs of known kiwaid squat lobsters (“yeti crabs”).
    A) Kiwa puravida modified from Thurber et al. [2011]; B) Kiwa sp. Galapagos Microplate; C) Kiwa araonae [2016]; D) Kiwa hirsuta modified from Muséum National D’Histoire Naturelle (MNHN) crustacean collection–credit Noémy Mollaret; E) Kiwa tyleri modified from Thatje et al. [2015]; (F) Kiwa sp. SWIR courtesy of David Shale. Scale bars are approximate and represent 10 mm. 

    Fig 2. Map showing locations of kiwaids and the Cretaceous stem lineage fossil Pristinaspina gelasina in relation to land-masses and mid-ocean ridges.
     Kiwaid representations are: i) Kiwa puravida ii) Kiwa sp. GM, iii) Kiwa hirsuta, iv) Kiwa araonae v) Kiwa tyleri vi) Kiwa sp. SWIR. Land shapes and ridge positions are modified from the InterRidge Vents Database 2.1 static map ( Areas of mid-ocean ridge in light blue denote unexplored regions that may support Kiwaidae. Spreading ridge abbreviations are as follows: NEPR = Northern East Pacific Rise; SEPR = Southern East Pacific Rise; GR = Galapagos Rift; GM = Galapagos Microplate; PAR = Pacific-Antarctic Ridge; AAR = Australian-Antarctic Ridge; CR = Chile Rise; ESR = East Scotia Ridge; AmAR = American-Antarctic Ridge; SWIR = Southwest Indian Ridge; CIR = Central Indian Ridge; SEIR = Southeast Indian Ridge; MAR = Mid-Atlantic Ridge. Photograph of K. puravida modified from Thurber et al. [2011] and Kiwa hirsuta modified from Muséum National D’Histoire Naturelle (MNHN) crustacean collection–credit Noémy Mollaret

    This study is an augmentation of Roterman et al. [2013] through the addition of more kiwaids, longer alignments and more fossil calibrations. Tree topologies produced here modify some of the inferences of the previous study. The sister-phyly of Kiwaidae and Chirostylidae within Chirostyloidea is placed in doubt, as are the previous inferences of a seep-to-vent evolutionary progression and a Northern Hemisphere origin for Kiwaidae. Current analyses do support the earlier inference for an East Pacific origin, however, and divergence estimates are broadly similar to previous analyses. Age estimates for the MRCA of Kiwaidae indicate an origin long after the PETM, around the Eocene-Oligocene boundary at a time of deep-water cooling and increased ventilation in the Pacific. Likewise, the rapid radiation of a newly defined Bristly clade appears synchronous with another transition to cooler and more ventilated conditions in the East Pacific during the Middle Miocene. The distribution, diversity, tree topology and divergence timing of vent-associated Kiwaidae in the Pacific is consistent with a pattern of regional extinctions, recolonisations and radiations along fast-spreading ridges over the last 40 million years. This pattern may have been punctuated by large-scale fluctuations in deep-water ventilation and temperature during the Cenozoic; further affecting the viability of Kiwaidae populations along large areas of mid-ocean ridge. The exploration of new vent and seep systems in the Pacific and beyond will help to better resolve the biogeographic history of Kiwaidae and provide new insights into the long-term resilience of metapopulations inhabiting deep-sea chemosynthetic ecosystems.

    Christopher Nicolai Roterman, Won-Kyung Lee, Xinming Liu, Rongcheng Lin, Xinzheng Li and Yong-Jin Won. 2018. A New Yeti Crab Phylogeny: Vent Origins with Indications of Regional Extinction in the East Pacific.  PLoS ONE. 13(3): e0194696.  DOI: 10.1371/journal.pone.0194696

    0 0

    Arkansaurus fridayi  Hunt & Quinn, 2018

    Illustration by Brian Engh 

    Whereas ornithomimosaurs (ostrich-mimic dinosaurs) are well known from Asia during the Early Cretaceous, they are less well known from this time in North America. Represented by a single specimen consisting of pedal elements, a new North American taxonArkansaurus fridayi, gen. et sp. nov., consists of a nearly complete right foot, recovered from the Lower Cretaceous (Albian–Aptian) Trinity Group of Arkansas. Arkansaurus fridayi can be distinguished from other ornithomimosaurs based on differentiated pedal unguals, a laterally compressed third metatarsal that is ovoid in proximal view, and a distal ungual with a very weak flexor tubercle, lacking spurs. The condition of this third metatarsal suggests that Arkansaurus fridayi is more basal than Asiatic ornithomimosaurs of similar age, but consistent with older North American forms. This specimen provides knowledge of a poorly understood radiation of ornithomimosaurs in Appalachia and is the only known saurischian dinosaurian fossil from the state of Arkansas.

    FIGURE 3. Arkansaurus fridayi, UAM-74–16-1 to UAM-74–16-3, holotype,
    articulated right metatarsals, in A, proximal and B, anterior views. Scale bar equals 10 cm. 

    FIGURE 4. Arkansaurus fridayi, holotype, digital surface scans of pedal phalanges.
     UAM-74–16-5, phalanx II-1, in A, proximal, B, distal, C, extensor, D, flexor, E, lateral, and F, medial views.
    UAM-74–16-4, phalanx III-1, in G, proximal, H, distal, I, extensor, J, flexor, K, lateral, and L, medial views.
    UAM74–16-6, phalanx IV-1, in M, proximal, N, distal, O, extensor, P, flexor, Q, lateral, and R, medial views.
    UAM-74–16-7, phalanx III-2, in S, proximal, T, distal, U, extensor, V, flexor, W, lateral, and X, medial views.
     UAM-74–16-8, large ungual, in Y, extensor, Z, lateral, AA, flexor, BB, medial, and CC, proximal views.
    UAM-74–16-8, ungual, in DD, proximal, EE, extensor, FF, lateral, GG, flexor, and HH, medial views.
    UAM-74–16-8, small ungual, in II, extensor, JJ, lateral, KK, flexor, and LL, medial views.
    Scale bar equals 10 cm.

    DINOSAURIA Owen, 1842 
    SAURISCHIA Seeley, 1887 
    THEROPODA Marsh, 1881; Gauthier, 1986 
    ORNITHOMIMOSAURIA Barsbold, 1976; Lee et al., 2014 

    ARKANSAURUS FRIDAYI, gen. et sp. nov.

    Etymology—The genus is named for the state of Arkansas, where the specimen was discovered. The species name is in honor of Joe B. Friday, who discovered the remains in 1972.



    Arkansaurus fridayi currently is one of the oldest basal ornithomimosaurs known from North America. Its occurrence in the southeastern portion of the North American continent is significant biogeographically, because most of the Early Cretaceous basal ornithomimosaurs were flourishing in Asia at the time, but are otherwise not well represented in North America. Further discoveries of similar ornithomimosaur taxa in North America will provide better understanding of additional, currently unknown, characters.

     ReBecca K. Hunt and James H. Quinn. 2018. A New Ornithomimosaur from the Lower Cretaceous Trinity Group of Arkansas. Journal of Vertebrate Paleontology. DOI:  10.1080/02724634.2017.1421209


    0 0

    Chersodromus rubriventris (Taylor, 1949)

    in Canseco-Márquez, Ramírez-González & Campbell, 2018. 


    Chersodromus is an endemic Mexican genus of snakes characterized by fused prefrontals shield. Only two species were previously known within the genus, C. liebmanni and C. rubriventris. We describe two new congeners, one from the Sierra Madre Oriental of northern Puebla and another from the Atlantic lowlands of the Chimalapas region in southeastern Oaxaca. These new species can be clearly differentiated on the basis of their morphology. Diagnostic characters distinguishing congeners include the number of dorsal scale rows, supralabials, and infralabials contacting anterior chinshields; whether or not the mental contacts the first pair of chinshields; and the coloration of the belly. We provide hemipenal descriptions of three species for which males are known.

    Keywords: Reptilia, external morphology, Hemipenis, Puebla, Chimalapas, Oaxaca

    Luis Canseco-Márquez, Cynthia G. Ramírez-González and Jonathan A Campbell. 2018. Taxonomic Review of the Rare Mexican Snake Genus Chersodromus (Serpentes: Dipsadidae), with the Description of Two New Species. Zootaxa. 4399(2);  151–169. DOI: 10.11646/zootaxa.4399.2.1


    0 0

     Aenigmatoconcha sumonthai
    C. Tumpeesuwan & S. Tumpeesuwan, 2018


     Aenigmatoconcha sumonthai, new species, is described from Tham Chang Phueak, a limestone range in Chumphon province, southern Thailand. The external morphology of the shell and soft parts, the genital system, and radula morphology were examined and compared with the type species of the genus, A. clivicola C. Tumpeesuwan & S. Tumpeesuwan, 2017 from northeastern Thailand. Externally the new species differs from A. clivicola in having a smaller shell, presence of black bands from the base of the long tentacles to the mantle edge, and both mantle shell lobes have numerous tiny white spots and irregular black marbling. The radula comprises approximately 22–35 transverse v-shaped rows of teeth, with each row having 11–150 unicuspid spatulated teeth. In the genital system, the penis is longer than the epiphallus and the base of the gametolytic sac is longer than the middle part. 

    Key words. Aenigmatoconcha, mantle shell lobes, radula, karst, endemic taxa, disjunct distribution 

    Fig. 2. Aenigmatoconcha sumonthai, new species, in natural habitat at the type locality; photographs taken on June 2017. A, two snails with the dorsal shell surface complately covered by the mantle shell lobes; B, two snails with mantle shell lobes retracted. (Photograph courtesy of Mr. Montri Sumontha).

    Superfamily Helicarionoidea Bourguignat, 1877
    Family Helicarionidae Bourguignat, 1877
    Subfamily Durgellinae Godwin-Austen, 1888
    Tribe Durgellini Godwin-Austen, 1888

    Genus Aenigmatoconcha C. Tumpeesuwan & S. Tumpeesuwan, 2017
    Type species. Aenigmatoconcha clivicola C. Tumpeesuwan & S. Tumpeesuwan, 2017

    Aenigmatoconcha sumonthai, new species

    Etymology. The species is named after the collector Montri Sumontha; the specific epithet “sumonthai” is from the family name “Sumontha”.

    Diagnosis. The characters distinguishing Aenigmatoconcha sumonthai, new species, from A. clivicola are the colour patterns on mantle shell lobes and body, as well as morphology of radula and genital organs. Mantle shell lobes bear irregular black marbling pattern and numerous tiny white spots (Fig. 2A). Two black bands, each running from the base of a long tentacle (eyestalk) to mantle edge, are present (Fig. 2A). Central teeth of radula have a globose unicuspid cusp, with their size smaller than the 1st lateral teeth and only the distal halves of the globose cusps emerge from the 1st lateral teeth (Fig. 4C). The epiphallus is shorter than penis, and the middle part of the gametolytic sac in the new species is shorter than in A. clivicola (Fig. 5).

    Chanidaporn Tumpeesuwan and Sakboworn Tumpeesuwan. 2018. Aenigmatoconcha sumonthai, A New Helicarionid Land Snail from Chumphon Province, Southern Thailand (Helicarionidae: Durgellinae). RAFFLES BULLETIN OF ZOOLOGY. 66; 170–176. 

    0 0

    Tropidurus azurduyae
    Carvalho, Rivas, Céspedes & Rodrigues, 2018

    In this study we describe Tropidurus azurduyae, a new species of lizard endemic to the Andes. This species is restricted to inter-Andean dry valleys of central and southern Bolivia, within the ecoregion known as Bolivian Montane Dry Forests. It is currently known from the departments of Chuquisaca, Cochabamba, Potosí, and Santa Cruz, where it ranges in elevation from about 1000 to 2800 m. In addition, our analyses of closely related populations of Tropidurus from Argentina, Bolivia, Brazil, and Paraguay revealed undescribed species in central and northeastern Brazil and eastern Bolivia that render T. etheridgei Cei, 1982, paraphyletic. These results underscore the need for a comprehensive revision of peripheral and disjunct populations currently assigned to widely distributed species of Tropidurus. The phylogenetic relationships and distribution patterns of these new taxa concur with recent findings supporting seasonally dry tropical forests and open formations of dry vegetation from South America as distinct biotic units. Furthermore, they offer no support for seasonally dry tropical forests as closely related areas. In line with these discoveries, we refute biogeographic scenarios based exclusively on vicariance to explain the biogeographic history of Tropidurus

    Adult male of Tropidurus azurduyae, sighted (not collected) at the type locality in the Torotoro National Park, Potosí, Bolivia.

    FIGURE 1. Habitats visited in the Torotoro National Park, Potosí, Bolivia.
    A–D, Prepuna (~2798 m). E–G, Inter-Andean dry valleys at the type locality of Tropidurus azurduyae (~2264 m). H, Adult male of Tropidurus azurduyae, sighted (not collected) at the type locality of the species.

    FIGURE 3. Live specimens of Tropidurus azurduyae.
    E, G, Adult female (allotype MHNC-R 3009); F, H, Adult male (holotype MHNC-R 3011). 

    Tropiduridae Bell, 1843
    Tropidurus Wied, 1825
    Tropidurus azurduyae, n. sp.

    Morphological Diagnosis: Tropidurus azurduyae is here morphologically diagnosed as a Tropidurus based on the observation of a set of characters suggested by Frost et al. (2001) as exclusive to the genus: skull not highly elevated at the level of the orbits; “flash” marks on underside of thighs present; circumorbitals distinct from other small supraorbital scales; lateral fringe not developed on both sides of fourth toes; enlarged middorsal scale row absent; tail terete; and hemipenis attenuate without apical disks. The presence of a maxilla not broad, nutritive foramina of maxilla strikingly enlarged, lingual process of dentary extending over lingual dentary process of coronoid, angular strongly reduced, and absence of medial centrale could not be examined without dissecting or clearing and staining specimens. These characters should be revised whenever larger series of individuals become available. 
    Tropidurus azurduyae is a member of the T. torquatus group per Frost et al. (2001). It differs from other species groups by lacking an enlarged middorsal scale row (well marked in species of the T. spinulosus group, especially in males), by exhibiting black “flash” marks on the underside of thighs and cloacal flap of adult males (yellow, cream, or orangey “flash” marks are present in males of the T. spinulosus group), and also by lacking a dorsoventrally flattened body (as observed in species of the T. semitaeniatus group and, more moderately, in T. bogerti). 
    Tropidurus azurduyae is the only species in the genus with lower flanks pigmented orange, a condition consistently observed in both sexes (fig. 3E–H). Its ventral head is darkly pigmented and offers contrast to the light circular blotches present on chin and also laterally (fig. 3G, H). The ground color of its throat is charcoal gray impregnated with strong orange coloration (fig. 3G, H). A pair of mite pockets is present on the lateral neck, with the posterior one larger; the anterior pocket originates lower than the posterior, but both usually end ventrally at the same level (fig. 3F). No pockets are found in the armpit and inguinal region of the new species. An elliptical or subrhomboidal black mark is present on the mid venter of adult males of T. azurduyae in addition to black “flash” marks on the underside of thighs and precloacal flap (fig. 3H). Tropidurus azurduyae is saxicolous, but may climb tree trunks and fallen logs occasionally (fig. 1H). In combination, this set of characters provides a safe diagnosis, distinguishing T. azurduyae from all other congeners.

    Etymology: The species name azurduyae is a noun in the feminine genitive case honoring Juana Azurduy de Padilla (Chuquisaca, Bolivia: July 12, 1780–May 25, 1862), one of the most distinguished Latin American leaders who bravely fought for the independence of the Spanish territory of Upper Peru, which comprised part of today’s Bolivia and Peru, and formed along with Argentina, Uruguay, and Paraguay the Viceroyalty of the Río de La Plata during colonial times. Her memory remained nearly forgotten for more than a century, until President Cristina Kirchner conferred on her the title of General of the Argentinian Army in 2009, and in that same year, the Bolivian Senate promoted Juana Azurduy posthumously to the rank of Marshal of the Republic, declaring her “Liberator of Bolivia.” Although the biography of Juana Azurduy assuredly places her as one of the most important women of Latin America, the history of her fight for freedom and equality has not received enough attention outside history classes and political events. Naming Tropidurus azurduyae we do not aim to merely reverence her as a historical personage and revolutionary soldier, but to genuinely honor her intelligence, courage, and heroic actions against a male-dominated colonialist world whose roots remain alive at the present time. This is an affirmative action to remind all Latin American women and men of our female heritage of strength and combativeness. 

     For a more comprehensive biography of Juana Azurduy, refer to the work of the Argentinian writer Mario “Pacho” O’Donnnel (1994), available online ( Those interested may follow the YouTube link ( to hear the song “Juana Azurduy” in the voice of the Argentinian singer Mercedes Sosa, honoring the valiant spirit of Juana Azurduy.

    The taxonomic description and reconstruction of the phylogenetic relationships of Tropidurus azurduyae reflect on our efforts to advance the systematics of widely distributed complexes of cryptic species of Tropidurus. Because tropidurine fossils have not been discovered to date, we were unable to perform a safe chronological analysis to determine minimum ages for clades and species. However, the identification of endemic species restricted to the inter-Andean dry valleys from central and southern Bolivia and other seasonally dry tropical forests and open dry areas from South America allow us to expand the body of evidence supporting these areas as distinct biotic units. Furthermore, our results provide evidence against the Pleistocene Arc hypothesis, and call our attention to revisiting the biogeographic history of the dry areas of South America based on improved data sets and comparative analyses of a larger number of clades. For the first time, our results show with clarity that scenarios based exclusively on vicariance are unlikely to explain the complex biogeographic history of Tropidurus. Nevertheless, even if the distribution data and phylogenetic patterns recovered thus far allow us to rule out certain hypotheses in favor of others, determining the timeframe of the events involved in the diversification and biogeographic history of Tropidurus is crucial. Certainly, the incorporation of the time component (Donoghue and Moore, 2003) remains as a major challenge for us to fully understand the evolutionary history of this lizard clade (Carvalho et al., 2013). 

     André L. G. Carvalho (André Luiz Gomes), Luis Rolando Rivas, Ricardo Céspedes and Miguel Trefaut Urbano Rodrigues. 2018. A New Collared Lizard (Tropidurus, Tropiduridae) endemic to the western Bolivian Andes and Its Implications for Seasonally Dry Tropical Forests. American Museum Novitates. 3896; 1-56. DOI:  10.1206/3896.1


    0 0

    Bohuslania matsmichaeli 
    Korshunova, Lundin, Malmberg, Picton & Martynov, 2018

    A unique example of brackish water fjord-related diversification of a new nudibranch genus and species Bohuslania matsmichaeli gen. n., sp. n. is presented. There are only few previously known brackish-water opisthobranchs and B. matsmichaeli gen. n., sp. n. is the first ever described brackish-water nudibranch with such an extremely limited known geographical range and apparently strict adherence to salinity levels lower than 20 per mille. Up to date the new taxon has been found only in a very restricted area in the Idefjord, bordering Sweden and Norway, but not in any other apparently suitable localities along the Swedish and Norwegian coasts. We also show in this study for the first time the molecular phylogenetic sister relationship between the newly discovered genus Bohuslania and the genus Cuthona. This supports the validity of the family Cuthonidae, which was re-established recently. Furthermore, it contributes to the understanding of the evolutionary patterns and classification of the whole group Nudibranchia. Molecular and morphological data indicate that brackish water speciation was triggered by paedomorphic evolution among aeolidacean nudibranchs at least two times independently. Thus, the present discovery of this new nudibranch genus contributes to several biological fields, including integration of molecular and morphological data as well as phylogenetic and biogeographical patterns.


    Fig 2. Morphology of Bohuslania matsmichaeli gen. n., sp. n.
    A, Dorsal appearance of the holotype; B. Ventral appearance holotype; C. Living specimen and its egg mass in situ; D, Pharynx and jaws (Paratype GNM 9024); E, Masticatory processes of jaws with denticles 

    Fig 2. Morphology of Bohuslania matsmichaeli gen. n., sp. n. F, Radula, central teeth (Holotype); G, Reproductive system of the holotype (non-destructive SEM with “nano-coating”); H, copulative organ (same technique as in G); I, Scheme of reproductive system.
    Scales: 10 μm (F, G, H), 500 μm (I).
    Abbreviations: a–ampulla, fgm–female gland mass, fgo–female opening, hd–hermaphroditic duct, p–penis, pg–penial gland, pr–prostate, ps–penial sheath, rsp–proximal receptaculum seminis, vd–vas deferens, v–vagina.

    Fig 2. Morphology of Bohuslania matsmichaeli gen. n., sp. n. A, Dorsal appearance of the holotype; B. Ventral appearance holotype; C. Living specimen and its egg mass in situ; D, Pharynx and jaws (Paratype GNM 9024); E, Masticatory processes of jaws with denticles;
    F, Radula, central teeth (Holotype); G, Reproductive system of the holotype (non-destructive SEM with “nano-coating”); H, copulative organ (same technique as in G); I, Scheme of reproductive system.
     Scales: 10 μm (F, G, H), 500 μm (I). Abbreviations: a–ampulla, fgm–female gland mass, fgo–female opening, hd–hermaphroditic duct, p–penis, pg–penial gland, pr–prostate, ps–penial sheath, rsp–proximal receptaculum seminis, vd–vas deferens, v–vagina.

    Fig 1. Phylogenetic tree of aeolidacean nudibranchs based on concatenated molecular data (COI + 16S + 28S + H3) represented by Bayesian Inference (BI). The aeolidacean families are highlighted. The brackish-water living, but non-related taxa Bohuslania gen. n. and Tenellia are indicated as “BW”. Numbers above branches represent posterior probabilities from Bayesian Inference. Numbers below branches indicate bootstrap values for Maximum Likelihood.

    Fig 4. Ontogenetic and phylogenetic framework for evidence of parallel paedomorphosis driven-evolution within the brackish-water nudibranchs of the families Cuthonidae (Bohuslania gen. n.) and Trinchesiidae (Tenellia adspersa). Adults (14 and 20 mm) of marine species Cuthona nana and C. divae respectively, considerably differ from adults of brackish-water Bohuslania matsmichaeli gen. n., sp. n., whereas juveniles of C. nana (6 mm length) and C. divae (5 mm length) are similar to the adult of B. matsmichaeli (10 mm length) by presence of only 3–4 anterior ceratal rows and absence of numerous pre-rhinophoral digestive gland branches. Because Bohuslania, compared to Cuthona, does not develop further to reach the stage with numerous anterior ceratal rows, this stage is considered missing in Bohuslania (indicated by “X” on the scheme) due to heterochronic developmental shifts leading to the adult paedomorphic external morphology. The brackish-water species Tenelliaadspersa (adult, 6 mm length) demonstrates a striking paedomorphic feature in presence of secondary oral veil. However, it belongs to the family Trinchesiidae which is more distantly related to the family Cuthonidae according to the present molecular phylogenetic analysis (Figs 1 and 2). Since the appearance of the small oral veil occurs in earlier ontogeny of aeolidacean nudibranchs and predates formation of oral tentacles and numerous anterior ceratal rows, the two stages of development of external features are considered as missing in Tenellia adspersa (indicated by two “X” on the scheme).


    The molecular phylogenetic results confirm the morphological analysis data. From the only other genus of the family Cuthonidae, Cuthona Alder & Hancock, 1855, Bohuslania gen. n. is morphologically readily distinguished by absence of the pre-rhinophoral rows of cerata and considerably smaller number of rows of the anterior digestive gland.

    Class Gastropoda
    Order Nudibranchia
    Family Cuthonidae Odhner, 1934

    Diagnosis: Body wide. Notal edges fully reduced. Cerata non-elevated, numerous per row. Ceratal rows branched. Anus acleioproctic or cleioproctic. Radula formula 0.1.0. Central teeth with strong cusp not compressed by adjacent lateral denticles. Vas deferens short, with weak prostate. Supplementary gland present, inserts to unarmed copulative organ.

    Included genera: Cuthona Alder & Hancock, 1855, Bohuslania gen. n.

    Genus Bohuslania gen. n.
    Type species: Bohuslania matsmichaeli gen. n., sp. n.

    Diagnosis: Three to four anterior rows of cerata, pre-rhinophoral cerata absent, head broad, oral tentacles placed towards lateral edges of head, no anterior foot corners, anus acleioproctic, jaws with single row of simple denticles, radular teeth narrow with prominent cusp, penis without stylet.

    Etymology: After Bohuslän region in southern Sweden, where the only locality of this new genus and species in the Idefjord is known.

    Species included: B. matsmichaeli sp. n.

    Bohuslania matsmichaeli sp. n.

    Holotype: Sweden, Idefjord, 59° 02.400' N 11° 24.430'E, inner part of the Idefjord, off beach east of Boråsgården, 7 m depth, 2013-10-8, coll. Mats Larsson and Michael Lundin (ZMMU Op-600, 3 mm in length preserved, 10 mm living length).

    Type locality: Idefjord, Bohuslän region.

    Etymology: This species is named in honour of Mats Larsson and Michael Lundin, who were the first to discover this unique taxon.

    Description: The length of the preserved holotype is 3 mm (living is 10 mm). The preserved length of 9 mature paratype specimens ranged from 3 to 4 mm. The body is moderately broad (Fig 2A and 2B). The rhinophores are slightly longer than oral tentacles, smooth. The cerata are relatively long, thin and finger-shaped. Pre-rhinophoral cerata absent. Ceratal formula of the holotype: right (4,5,5; Anus,4,3,3,2,2) left (3,4,5; 4,3,2,2). Paratype specimens possess 3–4 pre-anal branches of anterior digestive gland. The head is broad, semicircular, oral tentacles placed towards edges of the head. The foot is moderate, anteriorly rounded, no foot corners.

    Biology: Inhabits mixed environment with stones and mud in shallow (5–7 m) brackish water (15–18 per mille). The athecate hydroid Cordylophora caspia was found in the area and can be a probable food source for B. matsmichaeli. Potentially two techate hydroids could possibly also inhabit the area, Gonothyraea loveni and Laomedea flexuosa but these were not found together with B. matsmichaeli. The egg mass is in the shape of a narrow whitish spiral cord with about 3 whorls (Fig 2C). The egg mass contains about 250 eggs.

    Distribution: To date known only from the internal parts of the Idefjord in the Bohuslän region.

    Tatiana Korshunova, Kennet Lundin, Klas Malmberg, Bernard Picton and Alexander Martynov. 2018. First True Brackish-water Nudibranch Mollusc provides New Insights for Phylogeny and Biogeography and Reveals Paedomorphosis-driven Evolution.  PLoS ONE. 13(3): e0192177.  DOI:   10.1371/journal.pone.0192177


    0 0

    Figure 1: Phylogenetic tree for the Draco fimbriatus group including the Dcristatellus holotype.
    Phylogenetic tree for the Draco fimbriatus group based on a parsimony analysis of the complete mitochondrial ND2 gene (1,032 bp). The D. cristatellus holotype includes 183 bp of sequence data. Only two of 28 available D. maculatus samples were included to simplify the image. Non-parametric bootstrap values (1,000 replicates) are superimposed on the single most parsimonious phylogram for select clades.
    The photo in the bottom left is Draco punctatus. Photo: Jimmy A. McGuire.

    in McGuire, Cotoras, O'Connell, et al., 2018.
       DOI: 10.7717/peerj.4470


    We used Massively Parallel High-Throughput Sequencing to obtain genetic data from a 145-year old holotype specimen of the flying lizard, Draco cristatellus. Obtaining genetic data from this holotype was necessary to resolve an otherwise intractable taxonomic problem involving the status of this species relative to closely related sympatric Draco species that cannot otherwise be distinguished from one another on the basis of museum specimens. Initial analyses suggested that the DNA present in the holotype sample was so degraded as to be unusable for sequencing. However, we used a specialized extraction procedure developed for highly degraded ancient DNA samples and MiSeq shotgun sequencing to obtain just enough low-coverage mitochondrial DNA (547 base pairs) to conclusively resolve the species status of the holotype as well as a second known specimen of this species. The holotype was prepared before the advent of formalin-fixation and therefore was most likely originally fixed with ethanol and never exposed to formalin. Whereas conventional wisdom suggests that formalin-fixed samples should be the most challenging for DNA sequencing, we propose that evaporation during long-term alcohol storage and consequent water-exposure may subject older ethanol-fixed museum specimens to hydrolytic damage. If so, this may pose an even greater challenge for sequencing efforts involving historical samples.

    The development of HTS has revolutionized biological research by making genome-scale data readily available at a reasonable cost, even for non-model organisms. Systematists have fully embraced these advances in data acquisition for freshly sampled specimens, but are just beginning to harness HTS for the millions of fluid-preserved historical samples housed in natural history collections around the world. As we have shown here, acquiring genetic data from old museum specimens will sometimes present special challenges, but the information that can be gleaned from such specimens may be the only way to conclusively resolve previously intractable evolutionary and taxonomic questions.

    Jimmy A McGuire, Darko D Cotoras, Brendan O'Connell, Shobi Z S Lawalata, Cynthia Y Wang-Claypool, Alexander Stubbs, Xiaoting Huang, Guinevere O U Wogan, Sarah M Hykin, Sean B Reilly, Ke Bi, Awal Riyanto, Evy Arida, Lydia L Smith, Heather Milne, Jeffrey W Streicher and Djoko T Iskandar. 2018. Squeezing Water from A Stone: High-throughput Sequencing from A 145-year Old Holotype Resolves (barely) A Cryptic Species Problem in Flying Lizards.  PeerJ. 6:e4470.  DOI: 10.7717/peerj.4470

    0 0

    Eigenmannia loretana  Waltz & Albert, 2018


    A new species of the Eigenmannia trilineata species group is described from the Loreto, Peru region of the western Amazon basin. The new species is similar in external appearance to members of the E. trilineata species group, but has a distinct phenotype, being diagnosed from congeners by the following unique combination of characters: four longitudinal dark pigment stipes on the lateral surfaces (over the lateral line, hypaxial muscles, proximal and distal pterygiophore margins); short, relatively round head (head depth 86.8–96.7% head length) with a terminal mouth; intermediate posterodorsal expansion of infraorbital bones 1+2 (60–75% length of infraorbitals 1+2); 11–15 teeth in three rows on the premaxilla; six to seven teeth in a single row on the endopterygoid; eye high on head (suborbital depth 28–36% head length); ii, 13–14 pectoral-fin rays; 183–219 anal-fin rays; and a uniformly dark brown head and pectoral fins on freshly-preserved specimens. The new species extends the geographic range of described species of the E. trilineata species group to the Western Amazon. This new species elevates the current number of valid species within the E. trilineata species group to 15, and the number of species within Eigenmannia to 20.

    Keywords: Pisces, cryptic species, electric fish, freshwater fish, taxonomy, tropical diversity

     Brandon T. Waltz and James S. Albert. 2018. New Species of Glass Knifefish Eigenmannia loretana (Gymnotiformes: Sternopygidae) from the Western Amazon. Zootaxa. 4399(3); 399–411. DOI: 10.11646/zootaxa.4399.3.9